Linear time equivalence of Littlewood–Richardson coefficient symmetry maps

نویسندگان

  • Olga Azenhas
  • Alessandro Conflitti
  • Ricardo Mamede
چکیده

Benkart, Sottile, and Stroomer have completely characterized by Knuth and dual Knuth equivalence a bijective proof of the Littlewood–Richardson coefficient conjugation symmetry, i.e. cμ,ν = c t μt,νt . Tableau–switching provides an algorithm to produce such a bijective proof. Fulton has shown that the White and the Hanlon–Sundaram maps are versions of that bijection. In this paper one exhibits explicitly the Yamanouchi word produced by that conjugation symmetry map which on its turn leads to a new and very natural version of the same map already considered independently. A consequence of this latter construction is that using notions of Relative Computational Complexity we are allowed to show that this conjugation symmetry map is linear time reducible to the Schützenberger involution and reciprocally. Thus the Benkart–Sottile–Stroomer conjugation symmetry map with the two mentioned versions, the three versions of the commutative symmetry map, and Schützenberger involution, are linear time reducible to each other. This answers a question posed by Pak and Vallejo. Résumé. Benkart, Sottile, et Stroomer ont complètement caractérisé par équivalence et équivalence duelle à Knuth une preuve bijective de la symétrie de la conjugaison des coefficients de Littlewood–Richardson, i.e. cμ,ν = c t μt,νt . Le tableau-switching donne un algorithme par produire une telle preuve bijective. Fulton a montré que les bijections de White et de Hanlon et Sundaram sont des versions de celle bijection. Dans ce papier on exhibe explicitement le mot de Yamanouchi produit par cette bijection de conjugaison lequel à son tour conduit à une nouvelle version très naturelle de la même bijection déjà considérée indépendantement. Une conséquence de cette dernière construction c’est que en utilisant des notions de Complexité Computationnelle Relative nous pouvons montrer que cette bijection de symétrie de la conjugaison est linéairement réductible à la involution de Schützenberger et réciproquement. À cette cause la bijection de symétrie de la conjugaison de Benkart, Sottile et Stroomer avec les deux versions mentionnées, aussi bien les trois versions de la bijection de la commutativité, et la involution de Schützenberger sont linéairement réductibles à chacune de les autres. Ça répond à une question posée par Pak et Vallejo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics and geometry of Littlewood-Richardson cones

We present several direct bijections between different combinatorial interpretations of the Littlewood-Richardson coefficients. The bijections are defined by explicit linear maps which have other applications.

متن کامل

A max-flow algorithm for positivity of Littlewood-Richardson coefficients

Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time...

متن کامل

The Horn Recursion for Schur P - and Q - Functions : Extended

A consequence of work of Klyachko and of Knutson-Tao is the Horn recursion to determine when a Littlewood-Richardson coefficient is non-zero. Briefly, a LittlewoodRichardson coefficient is non-zero if and only if it satisfies a collection of Horn inequalities which are indexed by smaller non-zero Littlewood-Richardson coefficients. There are similar Littlewood-Richardson numbers for Schur P and...

متن کامل

M ar 2 00 6 THE HORN RECURSION FOR SCHUR P - AND Q - FUNCTIONS : EXTENDED ABSTRACT

A consequence of work of Klyachko and of Knutson-Tao is the Horn recursion to determine when a Littlewood-Richardson coefficient is non-zero. Briefly, a LittlewoodRichardson coefficient is non-zero if and only if it satisfies a collection of Horn inequalities which are indexed by smaller non-zero Littlewood-Richardson coefficients. There are similar Littlewood-Richardson numbers for Schur P and...

متن کامل

Estimating deep Littlewood-Richardson Coefficients

Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups (GLn). The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices sufficiently far from the boundary of the Littlewood Richardson cone. 2. A proof of approximate log-concav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009